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Cost Curve for CO2 Capture and Storage in the US

National Petroleum Council, Meeting the Dual Challenge, A Roadmap 
to At-Scale Deployment of Carbon Capture, Use, and Storage, 2019
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How can we incentivize CO2 capture through development of a CO2

utilization eco-system?
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Emerging Approach: Reactive Capture of CO2

Reactive Capture Definition: The coupled process of capturing CO2 from a mixed gas 
stream and converting it into a valuable product without going through a purified CO2

intermediate

Can Include:
• Integration of CO2 separation and 

conversion in one step 
• Integration of separation and 

conversion in one unit 
• Process intensification

Product Targets:
Must form a valuable product, or 
mixture of products, in a more 
reduced state than CO2 Summary Report of the Reactive CO2 Capture: Process Integration for the New Carbon 

Economy Workshop, February 18-19, 2020 (https://www.nrel.gov/docs/fy21osti/78466.pdf)
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Why Reactive Capture?

Avoid the energy 
input required to 

capture, purify, and 
compress CO2

Courtesy of David Heldebrant and Joshuah Stolaroff
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Reactive Capture Technology Categories
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Electrochemical Pathway Overview

Low-T (bi)carbonates Low-T Amines

Low-T Ionic Liquids High-T Molten Salts

• Primary Products: CO, 
Syngas, Formate, and 
Solid Carbon (High-T)

• TRL: 2 – 3 

• Current densities up to 
200 mA/cm2 have been 
demonstrated under 
some conditions

• Limited demonstration 
of DAC integration

• Small electrode surface 
areas (<10cm2) and 
limited durability testing

Ni/Fe/Ti, Li2CO3, 500 - 900°CAg/Bi, [BMIM]/[EMIM], RT

Ag/Hg/Pd, KHCO3 / NaHCO3, RT Ag/Cu/Bi/Pb, MEA/EDA, RT – 60°C
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Thermochemical Pathway Overview

• Primary Products: 
Methane, Syngas, 
Methanol, Formic Acid, 
and Carbonates

• TRL: 2 – 4 

• Elevated temperature 
(and pressure)

• Opportunities for plasma-
driven approaches

• DAC integration 
demonstrated for one-pot 
synthesis

• Often evaluated in batch 
mode with a limited 
number of cycles
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Biological Pathway Overview

Product
CO2 conversion 

(%)

Selectivity 

(%)

Productivity 

(g/L/day)

T (℃); 

P(atm)

CO2

Source

Chlorella sp. 60% 100% 0.682 26; 1 Air CO2

Chlorella valgaris 71% 100% 0.040 25; 1 Air CO2

Chlorella valgaris 45% 100% 0.024 25; 1 Air CO2

Scenedesmus 

obliquus

n.a. 100% 0.009 30; 1 Air CO2

Scenedesmus 

obliquus

n.a. 100% 0.016 30; 1 Air CO2

Scenedesmus sp 24% 100% 0.203 30; 1 Flue gas

B. braunii n.a. 100% 0.077 30; 1 Flue gas

Methane 99% 100% 568.9 62.5; 8.4 Biogas

Methane 85% 100% 97.5 65; 4.9 Pure CO2

Methane 60% 100% 364.8 65; 4.9 Pure CO2

Methane 22% 100% 87.9 65; 0.74 Pure CO2

Methane 65% 100% 53.5 65; 0.74 Pure CO2

Ethanol 95% 95% 195 37; 1 MSW gas

2,3-BDO 95% 5% 14 37; 1 MSW gas

Acetate ~100% 90% 148 30; 1 Pure CO2

Acetogen

Methanogen

Microalgae

• Primary Products: Methane, 
Ethanol, Acetate, Microalgae

• TRL: 2 – 9 (off-gases, power-
to-gas) 

• Diverse product slate 
accessible through metabolic 
engineering

• Mild temperature and 
pressure

• Methanogens and Acetogens 
are anaerobic microbes, thus 
DAC integration is challenging

• Mass transport limits 
productivity when considering 
low CO2 concentrations
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Overarching Challenges and Needs

• Integrating with real process streams

• Transitioning from batch to continuous processing –
matching capture and conversion rates

• Understanding and mitigating impacts of impurities

• Quantifying capture media stability, attrition, and 
cycleability

• Identifying figures of merit

– Energy efficiency

– Productivity-normalized capex

Decreasing CO2 concentration
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CO2-to-Intermediates
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Technoeconomic Analysis (TEA) Methodology

Approach:
• Design conceptual process including all major steps
• Calculate minimum selling price (MSP) using discounted cash-flow analysis (2016$)
• Evaluate 3 scenarios with major assumptions and technical metrics based on:
o Current: Results published in the open literature [$0.068/kWh; $40/mt CO2 cost]
o Future: Attainable process improvements or engineering judgements 

[$0.03/kWh; $20/mt CO2 cost]
o Theoretical: Thermodynamic limitations [$0.02/kWh; $0/mt CO2 cost]

• Perform inclusive sensitivity analysis to identify:
o Key cost drivers
o R&D needs to realize cost reductions

• Scale basis: CO2 stream generated from a 200M gallon per year ethanol biorefinery

CO (EC)
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Uncertainty and Interpretation

Definition Purpose
Common 

Methodology
Expected Accuracy 

Typical time 
requirement

Class 5
Concept screening
Ballpark estimate

Scaled or by 
analogy

High: +30 to +100%
Low: -20% to -50%

Hours

Class 4 Feasibility Factored estimate
High: +20 to +50%
Low: -15% to -30%

A week up to a 
few months

Class 3 Budget authorization More detailed costs
High: +10 to +30%
Low: -10% to -20%

Up to a year

Class 2 Bid estimates
Detailed unit 

designs and costs
High: +5 to +20%
Low: -5% to -15%

More than a year

Class 1 Baseline cost of design
Based on actual 
design details of 

each unit

High: +3 to +15%
Low: -3% to -10%

Several years 
worth of time

AACE International Recommended Practice No. 18R-97

All analysis has associated uncertainty due to approach and input data

MSPs are cost estimates. They are not direct 
indicators or metrics for market relevance or 

commercial readiness. 
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Selected Pathways and Products

Calculated MSP values for products across 5 different (direct and indirect) 
CO2 reduction technologies:

LTE: Low-temperature electrolysis 
HTE: High-temperature electrolysis 
MES: Microbial Electrosynthesis
BC: Biochemical
TC: Thermochemical

Z. Huang, R. Grim, et al., 
Energy & Environ. Sci., 
2021, 14, 3664-3678.
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Viability of Near-term Products

Economics are challenging under current conditions, but 8 of 11 
products can reach market parity in future scenario

Z. Huang, R. Grim, et 
al., Energy & Environ. 
Sci., 2021, 14, 3664-
3678.

Methanol
$0.8/kg
$40/GJ

Ethanol
$0.74/kg
$27/GJ

CO
$0.15/kg
$15/GJ
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Technology and Market Impacts

Opportunities exist for significant cost reduction through both favorable 
market conditions and technological advancements

Z. Huang, R. Grim, et 
al., Energy & Environ. 
Sci., 2021, 14, 3664-
3678.
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Opportunities for Transformational R&D

Economic analysis can help identify specific areas for transformational R&D

*Constant electrolyzer cost 
on a per m2 basis

Z. Huang, R. Grim, et al., 
Energy & Environ. Sci., 
2021, 14, 3664-3678.

Potential impact 
of reduced CO2

concentration
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Impact of CO2 Cost

CO2 source plays a critical role in overall economic viability

Z. Huang, R. Grim, et al., 
Energy & Environ. Sci., 
2021, 14, 3664-3678.

• Energy efficient 
processes utilizing the 
fewest electrons exhibit 
the highest relative 
impact of CO2 cost on 
MSP

• Increasing the CO2 price 
from $20/tonne
(baseline) to $63/tonne
(NGCC) increases MSP 
on average about 15%

$38/GJ

$58/GJ

$44/GJ
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Interactive Visualization Website

https://www.nrel.gov/bioenergy/co2-utilization-economics/

https://www.nrel.gov/bioenergy/co2-utilization-economics/
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Cost of Intermediate Upgrading

Methanol to High-Octane Gasoline

Estimated Cost:
$0.4 - $0.6/GGE

$3 - $5/GJ

Ethanol to SAF

D. Ruddy, et al., Nature Catalysis, 2019, 2, 632-640.

Estimated Cost:
$0.9 - $1.2/GGE

$7 - $9/GJ

L. Tao, et al., Green Chemistry, 2017, 19, 1082-1101.
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Summary

• Reactive capture is still relatively early stage, but a multitude of 
technology options exist

– Integration is essential combined with durability testing to prove out 
performance metrics

– Rigorous TEA, LCA, systems analysis, and risk assessment can help 
guide development

• DAC-to-SAF can achieve significant carbon intensity reductions relative to 
petroleum jet fuel when leveraging low-C electricity

• Beyond electricity price, capex utilization and overall energy efficiency 
play a critical role in economic viability

• How do we design technologies to drive down energy intensity while 
maximizing productivity?
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